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Abstract. The majority of research on bilevel programming has centered on the linear ver-
sion of the problem in which only one leader and one follower are involved. This paper
addresses linear bilevel multi-follower programming (BLMFP) problems in which there is no
sharing information among followers. It explores the theoretical properties of linear BLMFP,
extends the Kth-best approach for solving linear BLMFP problems and gives a computa-
tional test for this approach.
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1. Introduction

A bilevel programming (BLP) problem can be viewed as the noncooper-
ative, two-player game introduced by Von Stackelberg (Stackelberg, 1952)
in the context of unbalanced economic markets. In a basic BLP model,
the control for the decision variables is partitioned amongst the players.
The upper-level is termed as the leader and the lower-level is termed as
the follower. The follower makes its decisions after, and in full view of,
the leader’s decision. Because the set of feasible choices available to either
level is interdependent, the leader’s decision affects both the follower’s pay-
off and allowable actions, and vice versa (Bard, 1998).

The majority of research on bilevel programming has centered on the lin-
ear version of the problem. There have been nearly two dozen algorithms,
such as, the Kth-best approach (Candler and Townsley, 1982), (Bialas and
Karwan, 1984), Kuhn-Tucker approach (Bard Falk, 1982), (Bialas and Kar-
wan, 1978), (Hansen, 1992) and (Bialas, 1980), penalty function approach
(Aiyoshi and Shimizu, 1981), and (White and Anandalingam, 1993), pro-
posed for solving linear BLP problems since the field caught the attention of
researchers in the mid-1970s.

Every linear BLP problem with a finite optimal solution shares the
important property that at least one optimal (global) solution is attained at
an extreme point of the constraint region. This result was first established
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by Candler and Townsley (1982) for linear BLP problems with no upper
level constraints and with unique lower-level solutions. Afterwards Bard
(1984) and Bialas and Karwan (1984) proved this result under the assump-
tion that the constraint region is bounded. The result for the case where
upper-level constraints exist has been established by Savard (1989) under
no particular assumptions. Based on this property, Candler and Towns-
ley (1982) and Bialas and Karwan (1984) have proposed, respectively, the
Kth-best approach that compute global solutions of linear BLP problems
by enumerating the extreme points of the constraint region. The Kth-best
approach has been proven to be a valuable analysis tool with a wide range
of successful applications for linear BLP (Bard, 1998).

Our previous work presented a new definition of solution and related
theorem for linear BLP, thus overcame the fundamental deficiency of exist-
ing linear BLP theory (Shi et al., 2005a). We also described theoretical
properties of linear BLP, developed an extended Kth-best approach for lin-
ear BLP (Shi et al., 2005b) an extended Kuhn-Tucker approach and its
algorithm for linear BLP (Shi et al., 2005). In (Lu et al. 2005), we pro-
posed a model for linear bilevel multi-follower programming (BLMFP) and
a Kuhn-Tucker approach for BLMFP. The intent of this paper is to explore
theoretical properties of liner BLMFP, and develop the Kth-best approach
for linear BLMFP. Following the introduction, this paper reviews linear
bilevel multi-follower programming in Section 2. Theoretical properties and
the Kth-best approach are addressed in Section 3. A numeric example for
the Kth-best approach is given in Section 4. Section 5 gives a computa-
tional test for this approach. Section 6 discusses conclusions and further
study.

2. Linear Bilevel Multi-follower Programming

For x ∈X⊂Rn, yi ∈ Yi ⊂Rmi ,F : X× Y1× · · ·× YK→R1, and fi : X× Yi→
R1, i= 1,2, . . . ,K, a linear BLMFP problem in which K(K � 2) followers
are involved and there is no sharing information among them except the
leader’s is given (Lu, et al. submitted):

min
x∈X

F(x, y1, . . . , yK)= cx+
K∑

s=1

dsys (1a)

subject to Ax+
K∑

t=1

Btyt �b (1b)

min
yi∈Yi

fi(x, yi)= cix+ eiyi (1c)

subject to Aix+Ciyi �bi (1d)
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where c ∈ Rn, ci ∈ Rn, di ∈ Rmi , ei ∈ Rmi , b ∈ Rp, bi ∈ Rqi ,A ∈ Rp×n, Bi ∈
Rp×mi ,Ai ∈Rqi×n,Ci ∈Rqi×mi , i = 1,2, . . . ,K. As there is not sharing vari-
able among followers, all followers have individual objective function and
constraint.

DEFINITION 1. A topological space is compact if every open cover of
the entire space has a finite subcover. For example, [a, b] is compact in R

(the Heine-Borel theorem, University of Cambridge. http://thesaurus.maths.-
org/dictionary/map/word/10037, 2001).

Corresponding to (1) (Lu et al., 2005 ) gave the following basic definition
for linear BLMFP solution.

DEFINITION 2.

(a) Constraint region of the linear BLMFP problem:

S={
(x, y1, . . . , yK)∈X×Y1×· · ·×Yk,Ax+

K∑

t=1

Btyt �b,

Aix+Ciyi �bi, i=1,2, . . . ,K
}
.

The linear BLFMP problem constraint region refers to all possible
combinations of choices that the leader and followers may make.

(b) Projection of S onto the leader’s decision space:

S(X)={
x∈X :∃yi ∈Yi,Ax+

K∑

t=1

Btyt �b,Aix+Ciyi �bi, i=1,2,...,K
}
.

Unlike the rules in uncooperative game theory where each player must
choose a strategy simultaneously, the definition of BLMFP model
requires that the leader moves first by selecting an x in attempting to
minimize his objective subjecting to constraints of both upper and each
lower level.

(c) Feasible set for each follower ∀x ∈S(X):

Si(x)={yi ∈Yi : (x, y1, . . . , yK)∈S}, i=1,2, . . . ,K.

The feasible region for the follower is affected by the leader’s choice of
x, and allowable choices of each follower are the elements of S.

(d) Each follower’s rational reaction set forx ∈S(X):

Pi(x)={
yi ∈Yi :yi ∈arg min[fi(x, ŷi) : ŷi ∈Si(x)]

}
, i=1,2, . . . ,K,
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where arg min[fi(x, ŷi) : ŷi ∈ Si(x)]= {yi ∈ Si(x) : fi(x, yi) � fi(x, ŷi), ŷi ∈
Si(x)}. The followers observe the leader’s action and simultaneously
react by selecting yi from their feasible set to minimize their objective
functions, respectively.

(e) Inducible region:

IR={(x, y1, . . . , yK) : (x, y1, . . . , yK)∈S, yi ∈Pi(x), i=1,2, . . . ,K}.

To ensure that (1) has an optimal solution, we gave the following
assumption.

Assumption 1

(a) S is nonempty and compact.
(b) For decisions taken by the leader, each follower has some room to

respond; i.e, Pi(x) �=φ.
(c) Pi(x) is a point-to-point map.

Thus in terms of the above notations, the linear BLMFP problem can be
written as

min{F(x, y1, . . . , yK) : (x, y1, . . . , yK)∈ IR}. (2)

3. Theoretical Properties and the Kth-best Approach for Linear BLMFP

THEOREM 3.1. The inducible region can be written equivalently as a piece-
wise linear equality constraint comprised of supporting hyperplanes of con-
straint region S

Proof. Let us begin by writing the inducible region of Definition 2(e)
explicitly as follower:

IR={
(x,y1,...,yK) :(x,y1,...,yK)∈S,eiyi=min[ei ỹi :Biỹi �b−Ax−

K∑

t=1,t �=i

Btyt ,

Ci ỹi �bi−Aix,Cjyj �bj−Ajx,j=1,2,...,K,j �= i,ỹi �0],i=1,2,...,K
}
.

Let us define

b
′ = (b, b1, . . . , bK)T ,A

′ = (A,A1, . . . ,AK)T ,B
′
i= (Bi, α1, . . . , αK)T ,

where αj ∈Rqj×mj , i, j=1,2, . . . ,K and if j= i, then αj =Ci , otherwise αj =
(0)qj×mj

.
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Now, we have

IR={
(x, y1, . . . , yK) : (x, y1, . . . , yK)∈S, eiyi

=min
[
eiỹi :B

′
i ỹi �b

′
i−A

′
x−

K∑

s=1,s �=i

B
′
sys,ỹi �0

]
, i=1,2, . . . ,K

}
. (3)

Let us define

Qi(x,yj ,j=1,2,...K,j �= i)=min[ei ỹi :B
′
i ỹi �b

′
i−A

′
x−

K∑

s=1,s �=i

B
′
sys,ỹi �0],

(4)

where i=1,2, . . . ,K.
For each value of x ∈ S(X), the resulting feasible region to problem (1)

is nonempty and compact. Thus, for Qi , which is a linear program param-
eterized in x, yj , j = 1,2, . . . ,K and j �= i, always has a solution. From
duality theory we get

max
{
u(A

′
x+

K∑

s=1,s �=i

B
′
sys−b

′
i) :uB

′
i �−ei, u�0

}
, (5)

which has the same optimal value as (4) at the solution u∗. Let u1, . . . , us

be a listing of all the vertices of the constraint region of (5) given by U =
{u : uB

′
i �−ei, u � 0}. Because we know that a solution to (5) occurs at a

vertex of U , we get the equivalent problem

max
{
ul

(
A
′
x+

K∑

s=1,s �=i

B
′
sys−b

′
i

)
:ul ∈{u1, . . . , us}}, (6)

which demonstrates that Qi(x, yj , j = 1,2, . . . ,K, j �= i), is a piecewise lin-
ear function. Rewriting IR as

IR={(x,y1,...,yk)∈S :Qi(x,yj ,j=1,2,...,K,j �= i)−eiyi=0,i=1,2,...,K}
(7)

yields the desired result.

COROLLARY 3.1. The linear BLMFP problem (1) is equivalent to min-
imizing F over a feasible region comprised of a piecewise linear equality
constraint.

Proof. By (2) and Theorem 3.1, we have desired result.
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The each function Qi defined by (4) is convex and continuous. In gen-
eral, because we are minimizing a linear function F = cx+∑K

s=1 dsys over
IR, and because F is bounded below S by, say, min{cx +∑K

s=1 dsys :
(x, y1, . . . , yK)∈S}, the following can be concluded.

COROLLARY 3.2. A solution for the linear BLMFP problem occurs at a
vertex of IR.

Proof. A linear BLMFP problem can be written as in (2). Since F =cx+∑K
s=1 dsys is linear, if a solution exists, one must occur at a vertex of IR.

The proof is completed.

COROLLARY 3.3. If x is an extreme point of IR, it is an extreme point
of S.

Proof. A linear BLMFP programming can be written (2). Since F =cx+∑K
s=1 dsys is linear, if a solution exists, one must occur at a vertex of IR.

The proof is completed.

THEOREM 3.2. The solution (x∗, y∗1 , . . . , y∗K) of the linear BLMFP prob-
lem occurs at a vertex of S

Proof. Let (x1, y1
1 , . . . , y

1
K), . . . , (xr, yr

1, . . . , y
r
K) be the distinct vertices of

S. Since, any point in S can be written a convex combination of these ver-
tices, let (x∗, y∗1 , . . . , y∗K)=∑r

j=1 αj (x
j , y

j

1 , . . . , y
j

K), where
∑r

j=1 αj = 1, αj �
0, j = 1,2, . . . , r̄ and r̄ � r. It must be shown that r̄ = 1. To see this let
us write the constraints to (1) at (x∗, y∗1 , . . . , y∗K) in their piecewise linear
form (7).

0=Qi(x, y∗l , l=1,2, . . . ,K, l �= i)− eiy
∗
i , i=1,2, . . . ,K (8)

Rewrite (8) as follows

0=Qi

(∑

j

αj (x
j , y

j

l , l=1,2, . . . ,K, l �= i)
)
− ei

(∑

j

αjy
j

i

)

�
∑

j

αiQi(x
j , y

j

l , l=1,2, . . . ,K, l �= i)−
∑

j

αj eiy
j

i ,

where i=1,2, . . . ,K.
By convexity of Qi(x, yl, l=1,2, . . . ,K, l �= i), we have

0�
∑

j

αj

(
Qi(x

j , y
j

l , l=1,2, . . . ,K, l �= i)− eiy
j

i

)
,

where i=1,2, . . . ,K.
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But by definition,

Qi(x
j , y

j

l , l=1,2, . . . ,K, l �= i)= min
yi∈S(xj )

eiyi � eiy
j

i ,

where i=1,2, . . . ,K.
Therefore, Qi(x

j , y
j

l , l = 1,2, . . . ,K, l �= i) − eiy
j

i � 0, j = 1,2, . . . , r̄, i =
1,2, . . . ,K. Noting that αj � 0, j = 1,2, . . . , r̄, the equality in the pre-
ceding expression must hold or else a contradiction would result in the
sequence above. Consequently, Qi(x

j , y
j

l , l = 1,2, . . . ,K, l �= i) − eiy
j

i =
0, j = 1,2, . . . , r̄, i = 1,2, . . . ,K. This implies that (xj , y

j

1 , . . . , y
j

k ) ∈ IR, j =
1,2, . . . , r̄ and (x∗, y∗1 , . . . , y∗k ) can be written as a convex combination of
points in IR. Because (x∗, y∗1 , . . . , y∗k ) is a vertex of IR, a contradiction
results unless r̄=1. This means that (x∗, y∗1 , . . . , y∗k ) is an extreme point of
S. The proof is completed.

Theorem 3.2 and Corollary 3.3 have provided theoretical foundation for
our new algorithm. It means that by searching extreme points on the con-
straint region S, we can efficiently find an optimal solution for a linear
BLMFP problem. The basic idea of our algorithm is that according to the
objective function of the upper level, we arrange all the extreme points in
S in descending order, and select the first extreme point to check if it is
on the inducible region IR. If yes, the current extreme point is the optimal
solution. Otherwise, the next one will be selected and checked.

More specifically, let (x1, y1
1 , . . . , y

1
K), . . . , (xN, yN

1 , . . . , yN
K ), denote the N

ordered extreme points to the linear BLMFP problem

min
{
cx+

K∑

s=1

dsys : (x, y1, . . . , yK)∈S
}
, (9)

such that cxj +
K∑

s=1
dsy

j
s � cxj+1+

K∑
s=1

dsy
j+1
s ,j =1,2, . . . ,N −1.

Let (ỹ1, ỹ2, . . . , ỹK) denote the optimal solution to the following problem

min(fi(x
j , yi) :yi ∈Si(x

j )), i=1,2, . . . ,K (10)

We only need to find the smallest j, j =1,2, . . . ,N under which y
j

i = ỹi ,
i=1,2, . . . ,K.

Let us write (10) as follows

min fi(x, yi)

subject to yi ∈Si(x)

x=xj ,

where i=1,2, . . . ,K.
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We only need to find the smallest j under which y
j

i = ỹi , i=1,2, . . . ,K.
From Definition 2.2(b), rewrite (10) as follows

min fi(x, yi)= cix+ eiyi (11a)

subject to Ax+
K∑

t=1

Btyt �b (11b)

Alx+Clyl �bl, l=1,2, . . . ,K (11c)

x=xj (11d)

y1 �0, y2 �0, . . . , yK �0, (11e)

where i=1,2, . . . ,K.
The solving is equivalent to select one ordered extreme point

(xj , y
j

1 , . . . , y
j

K), then solve (11) to obtain the optimal solution ỹi . If for all i,
y

j

i = ỹi , then (xj , y
j

1 , . . . , y
j

K) is the global optimum to (1). Otherwise, check
the next extreme point.

It can be accomplished with the following procedure.

Step 1. Put j← 1. Solve (9) with the simplex method to obtain the opti-
mal solution (x1, y1

1 , . . . , y
1
K). Let W = (x1, y1

1 , . . . , y
1
K) and T = φ.

Go to Step 2.
Step 2. Solve (11) with the bounded simplex method. Let ỹi denote the

optimal solution to (11). If y
j

i = ỹi for all i, i = 1, . . . ,K, stop;
(xj , y

j

1 , . . . , y
j

K) is the global optimum to (1). Otherwise, go to
Step 3.

Step 3. Let W[j ] denote the set of adjacent extreme points of
(xj , y

j

1 , . . . , y
j

K) such that (x, y1, . . . , yK) ∈ W[j ] implies
cx + ∑K

s=1 dsys � cxj + ∑K
s=1 dsy

j
s . Let T = T ∪ (xj , y

j

1 , . . . , y
j

K)

and W = (W ∪W[i])\T . Go to Step 4.
Step 4. Set j← j +1 and choose (xj , y

j

1 , . . . , y
j

K) so that

cxj +
K∑

s=1

dsy
j
s =min{cx+

K∑

s=1

dsys : (x, y1 . . . , yK)∈W }.

Go to Step 2.

4. A Numeric Example for the Kth-best Approach

Let us give the following example to show how the Kth-best approach
works.
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EXAMPLE 1. Consider the following linear BLMFP problem with x ∈
R1, y ∈R1, z∈R1 and X={x �0}, Y ={y �0},Z={z�0}.

min
x∈X

F(x, y, z)=x−2y−4z

subject to −x+3y �4

−x+ z�1

min
y∈Y

f1(x, y)=x+y,

subject to x−y �0

−x−y �0,

min
z∈Z

f2(x, z)=x+ z

subject to x+ z�4

2x−5z�1

2x+ z�1.

According to the Kth-best approach, Example 1 can be rewritten as fol-
low in the format of (9),

min F(x, y, z)=x−2y−4z

subject to −x+3y �4

−x+ z�1

x−y �0

−x−y �0

x+ z�4

2x−5z�1

2x+ z�1

x �0, y �0, z�0.

Step 1, set j =1, and solve the above problem with the simplex method
to obtain the optimal solution (x[1],y[1],z[1]) = (1.5,1.83,2.5). Let W =
(1.5,1.83,2.5) and T =φ. Go to Step 2.

Loop 1:
Setting i←1 and by (11), we have

min f1(x, y)=x+y

subject to −x+3y �4

−x+ z�1

x−y �0

−x−y �0
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x+ z�4

2x−5z�1

2x+ z�1

x=1.5

y �0

z�0.

Using the bounded simplex method, we have ỹj =1.5. Because of ỹj �=y[j ],
we go to Step 3. We have
W[j ]= (1.5,1.83,2.5), (0,1.33,1), (1.5,1.5,2.5), (0.5,1.5,0), (2,2,2),

T ={(1.5,1.83,2.5)} and
W =(0,1.33,1), (1.5,1.5,2.5), (0.5,1.5,0), (2,2,2), then go to Step 4. Update
j =2, and choose (x[j ],y[j ],z[j ])= (1.5,1.5,2.5), then go to Step 2.

Loop 2:
Setting i←1 and by (11), we have

min f1(x, y)=x+y

subject to −x+3y �4

−x+ z�1

x−y �0

−x−y �0

x+ z�4

2x−5z�1

2x+ z�1

x=1.5

y �0

z�0.

Using the bounded simplex method, we have ỹj =1.5 and ỹj =y[j ]. Setting
i← i+1 and by (11), we have

min f2(x, z)=x+ z

subject to −x+3y �4

−x+ z�1

x−y �0

−x−y �0

x+ z�4
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2x−5z�1

2x+ z�1

x=1.5

y �0

z�0.

Using the bounded simplex method, we have z̃j =0.4. Because of z̃j �= z[j ],
we go to Step 3. We have
W[j ]={(1.5,1.83,2.5), (0,0,1), (1.5,1.5,2.5), (0.5,0.5,0), (2,2,2)},
T ={(1.5,1.83,2.5), (1.5,1.5,2.5)} and
W ={(0,1.33,1), (0.5,1.5,0), (2,2,2), (0,0,1), (0.5,0.5,0)}, then go to Step
4. Update j =3, and choose (x[j ],y[j ],z[j ])= (2,2,2), then go to Step 2.

Loop 3:
Setting i←1 and by (11), we have

min f1(x, y)=x+y

subject to −x+3y �4

−x+ z�1

x−y �0

−x−y �0

x+ z�4

2x−5z�1

2x+ z�1

x=2

y �0

z�0.

Using the bounded simplex method, we have ỹj = 2 and ỹj = y[j ]. Setting
i← i+1 and by (11), we have

min f2(x, z)=x+ z

subject to −x+3y �4

−x+ z�1

x−y �0

−x−y �0

x+ z�4
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2x−5z�1

2x+ z�1

x=2

y �0

z�0.

Using the bounded simplex method, we have z̃j =0.6. Because of z̃j �= z[j ],
we go to Step 3. We have
W[j ]={(1.5,1.83,2.5), (1.5,1.5,2.5), (2,2,0.6), (2,2,2)},
T ={(1.5,1.83,2.5), (1.5,1.5,2.5), (2,2,2)} and
W ={(0,1.33,1), (0.5,1.5,0), (0,0,1), (0.5,0.5,0), (2,2,0.6)}, then go to Step 4.
Update j =3, and choose (x[j ],y[j ],z[j ])= (2,2,0.6), then go to Step 2.

Loop 4:
Setting i←1 and by (11), we have

min f1(x, y)=x+y

subject to −x+3y �4

−x+ z�1

x−y �0

−x−y �0

x+ z�4

2x−5z�1

2x+ z�1

x=2

y �0

z�0

Using the bounded simplex method, we have ỹj = 2 and ỹj = y[j ]. Setting
i← i+1 and by (11), we have

min f2(x, z)=x+ z

subject to −x+3y �4

−x+ z�1

x−y �0

−x−y �0

x+ z�4
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2x−5z�1

2x+ z�1

x=2

y �0

z�0.

Using the bounded simplex method, we have z̃j =0.6 and z̃j =z[j ]. The solu-
tion (x[j ], y[j ], z[j ])= (2,2,0.6) is the global solution to the example. There-
fore, the optimal solution of the bilevel multi-follower problem occurs at the
point (x∗, y∗, z∗)= (2,2,0.6) with the leader’s objective value F ∗ =−4.4, and
two followers’ objective values f ∗1 =4 and f ∗2 =2.6, respectively.

5. Computational Test for the Kth-best Approach

No computational experience was reported for the Kth-best algorithm for
one leader and one follower linear bilevel problems. We used following two
BLMFP problems to test our Kth-best algorithm.

EXAMPLE 1.

min
x1,x2∈X

F(x1, x2, y, z)=3x1+8x2+7y+11z

subject to 5x1+2x2−y+6z�40

6x1−x2+13y �15

x1+x2−7z�10

7y+4z�20

min
y∈Y

f1(x1, x2, y)=2x1+x2−y

subject to 5x1+7y �15

−4x2+25y �3

min
z∈Z

f2(x1, x2, z)=15x1−x2+80z

subject to 40x1+ z�5,

where x1, x2∈R1, y∈R1, z∈R1 and X={x1 >0, x2 >0}, Y ={y >0},Z=z>0.
The CPU run time is 0.08799 sec, loop times are 7 and an optimal solu-

tion occurs at the point (x∗1 , x∗2 , y∗, z∗)= (0.12,11.79,2.01,0.27) with F ∗ =
111.69, f ∗1 =10.02 and f ∗2 =11.61.
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EXAMPLE 2.

min
x1∈X

F(x1, x2, . . . , x11)=80x1−0.5x2+3x3+0.7x4−10x5−0.99x6

+13x7+31x8−0.3x9+0.4x10−0.23x11

subject to x1+x2 �18.5

−0.31x1+x3 �0

3.2x1−x4 �0

x1+x5 �5.5

−0.25x1−x6 �0

4.6x1−x7 �0

0.5x1+0.48x8 �11

4.34x1−x9 �0

0.32x1−x10 �0

x1+x11 �7.9

min
x2∈X

f1(x1, x2)=0.9x1+3x2

subject to 2.1x1−x2 �0

x1+x2 �2.7

min
x3∈X

f2(x1, x3)=3x1−2.2x3

subject to x1+x3 �20

0.8x1+0.91x3 �1.8

min
x4∈X

f3(x1, x4)=0.4x1−x4

subject to x1+x4 �31.5

−0.4x1+x4 �0

min
x5∈X

f4(x1, x5)=0.7x1+21x5

subject to 0.3x1+0.4x5 �8.5

−2.8x1+x5 �0

min
x6∈X

f5(x1, x6)=10x1+0.67x6

subject to x1+x6 �31.4

x1+x6 �6.3

min
x7∈X

f6(x1, x7)=2x1−3x7

subject to 2x1+x7 �17.5

−0.5x1+x7 �0
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min
x8∈X

f7(x1, x8)=0.75x1−20.5x8

subject to −8.6x1+x8 �0

x1+x8 �7.6

min
x9∈X

f8(x1, x9)=0.3x1+6.7x9

subject to x1+x9 �18.6

0.26x1−x9 �0

min
x10∈X

f9(x1, x10)=0.65x1−3.2x10

subject to x1+x10 �16.7

x1+x10 �5.85

min
x12∈X

f10(x1, x11)=x1+0.56x11

subject to x1+x11 �70.5

−0.15x1+x11 �0,

where x1, x2, . . . , x11∈R1, and X={x1 >0, x2 >0, . . . , x11}.
The CPU run time is 1.12914 sec, loop times are 34 and an opti-

mal solution occurs at the point (x∗1 , x∗2 , x∗3 , x∗4 , x∗5 , x∗6 , x∗7 , x∗8 , x∗9 , x∗10, x
∗
11)=

(1.45, 1, 25, 18, 55, 4.63, 4.05, 4.85, 6.66, 12.45, 0.38, 15.25, 0.22) with
F ∗=607.44, f ∗1 =5.06, f ∗2 =−36.46, f ∗3 =−4.05, f ∗4 =86.06, f ∗5 =17.75, f ∗6 =−17.08, f ∗7 =−254.14, f ∗8 =2.98, f ∗9 =−47.86 and f ∗10=1.57.

All computations were performed on an Intel� Pentium� 4, CPU
2.8 GHz and 512 MB RAM. Web server is ISS 5. Database Server is
Microsoft SQL Server 2000. The application is developed using. ASP.
Table 1 shows the computational results for the above examples.

As expected, the CPU time grew exponentially with the size of the
problem, more importantly, the number loops depended on the size of the
problem too.

Table 1. Computational results

Number Number CPU time Number CPU time/Loop
followers constraints (sec.) loops (sec/loop)

Example 1 2 11 0.08799 7 0.01257
Example 2 10 41 1.12914 34 0.03321
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6. Conclusion and Further Study

This paper addresses the theoretical properties of linear bilevel multi-
follower programming problems in which there are no sharing variables
except the leader’s. This paper also presents the Kth-best approach for lin-
ear bilevel multi-follower programming and gives a computational test for
this approach. The further study of the research is to explore theoretical
properties of linear bilevel multi-follower programming problems in which
there are sharing variables among followers.
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